Estimation of soil respiration: Techniques for measurement of soil gas

Mark Blonquist Apogee Instruments Bruce Bugbee Utah State University Scott Jones Utah State University

Two methods for soil respiration measurement

Soil surface flux (chambers):

- widely used
- commercially available (\$15,000-60,000)
- must account for altered boundary layer
- doesn't need diffusion coefficient

Photo from LI-COR Biosciences

Gradient flux (buried sensors):

- not commercially available (\$3,000-\$15,000)
- provides subsurface data
- requires diffusion coefficient
- challenging to measure subsurface gas concentration

Photo from Turcu et al. (2003)

Continuous Soil Carbon Dioxide and Oxygen Measurements and Estimation of Gradient-Based Gaseous Flux

Vasile E. Turcu, Scott B. Jones, and Dani Or*

measuring CO_2

Advantage of 1 – No bicarbonate effects measuring O_2 2 – Low cost (approx. \$300 vs. \$900)

Once physical effects are accounted for, relationship between C flux and C metabolized (respiration) is 1:1

Respiratory quotient: CO₂/O₂

CarbohydrateRQ = 1.0ProteinRQ = 0.8FatRQ = 0.6LigninRQ = 0.2

Nitrification:

 $\frac{RQ}{NH_4} + 2O_2 \rightarrow NO_3 + 2H^+ + H_2O$

Two ways to express gas concentration

Absolute Units

partial pressure
 [kPa]

Relative Units

- percent gas in air
 [%]
- moles of gas per unit volume
 mole fraction
 [kPa kPa⁻¹ air]
- mass of gas per unit volume
 parts per million
 [g m⁻³]
 [ppm]

Gas sensors respond to absolute concentration, but are generally calibrated to read relative units

Factors affecting gas concentration in soil

Barometric Pressure

Factors affecting gas concentration in soil

- Barometric pressure
- Humidity
 - (function of temperature)

Factors affecting gas concentration in soil

- Pressure
- Humidity
- Temperature
 - effect on molar density and sensor electronics

• gas / liquid partitioning

Pure CO₂ is 30 times more soluble in water than Pure O₂

Solubility is roughly equal when CO₂ concentration is 0.6 %

Conclusions

- Gradient flux approach warrants further consideration; in situ gas measurements need appropriate correction to account for physically-based fluxes
- O₂ measurements provide a useful supplement to CO₂ measurements