Principles of Energy Balance in Environmental Systems

Bruce Bugbee Department of Plants, Soils, and Climate

Lecture 1

- 1. Introduction: The magnitude of water use in agriculture
- 2. The challenge of measuring water use and evapotranspiration
- 3. Reference books on environmental physics
- 4. First law of thermodynamics: energy in equals energy out
- 5. The seven components of the energy balance equation
- 6. The magnitude of latent heat of evaporation
- 7. Understanding energy and power
- 8. Shortwave and longwave radiation
- 9. $E = mc^2$ homework

Environmental Plant Physiology

2016 Lecture and Exam Schedule Plants, Soils and Climate 5270 / 6270

Bruce Bugbee (<u>bruce.bugbee@usu.edu</u>)
Lance Stott (<u>lance.stott@aggiemail.usu.edu</u>)

Date	Topic	E
January 13	Course Overview: Introduction	Energy component
15	Leaf Energy Balance: Energy input	Energy into the
20	Leaf Energy Balance: Types of Radiation	Energy into the Plant Community
22	Leaf Energy Balance: Longwave radiation	Plant Community
27	Leaf Energy Balance: Radiation absorption.	
29	Leaf Energy Balance: Transpiration	
February 3	Leaf energy balance: Conduction & Convection	
5	Plant Growth Analysis: Relative Growth Rate	
10	Plant Growth Analysis: Leaf and Stem partitioning	
12	Plant Growth Analysis: Community growth rate	Energy Intercepted
17	Plant growth analysis: Leaf angles	by the Plant Community
19	In class EXAM: Radiation & Growth analysis	by the Flant Community
24	Canopy Photosynthesis: Radiation absorption	
26	Canopy Photosynthesis: Radiation attenuation	
March 2	Canopy Photosynthesis: Radiation attenuation	
4	Photosynthetic efficiency	
7 – 11	Spring Break - no class	
16	Photosynthetic efficiency	Energy conversion
18	Photosynthetic efficiency	in photosynthesis
23	C ₃ /C ₄ /CAM Characteristics in Plants	
25	Water Use Efficiency: stomatal control	
30	Maintenance and Growth Respiration	Energy Conversion
	(Take home mid-term - 24 hours- due next day at no	on) in respiration
April 1	Maintenance and Growth Respiration	
6	Long distance Transport: Pressure gradients	
8	Phloem Transport: Driving gradients	Energy Partitioning
13	Assimilate Partitioning: Source-Sink Relationships	to seeds
15	Assimilate Partitioning: Source-Sink Relationships	
20	Absorption Capacity of Root Systems	
22	Nitrogen: uptake, translocation, assimilation	
27	Stress Physiology: Water	
29	Stress Physiology: Temperature	
May 4	Wednesday - Comprehensive Final Exam: 11:30	- 1:20

Environmental Plant Physiology

 $\Psi = R/V_w *T_k *Ln(RH)$

$$Rn = \lambda E + H + P - R + G$$

$$E = \sigma T^4$$

$$Flux = g(Ci - Ca)$$

Carbon Use Efficiency = Pnet / Pgross

$$\Psi_T = \Psi_s + \Psi_p$$

$$RGR = \frac{\ln(M_2) - \ln(M_1)}{t_2 - t_1}$$

$$\frac{I_o}{|I_i|} = e^{K \times LAI}$$

World Water Use

Environmental Plant Physiology 5270 / 6270 Modeling assignment number one

$E = mc^2$

5 points - show your work below Make strict use of SI units

N	J	am	e		
	•	-	_	-	_

1. Based on Einstein's famous equation, calculate how much energy is in a typical pea seed. If you could convert all of the dry mass in this pea seed to energy, how many years could you live after eating it?

SI UNITS **DERIVED UNITS WITH SPECIAL NAMES* BASE UNITS PRESSURE** pascal **ENERGY** (N/m²) meter joule **LENGTH** (N·m) newton FORCE (kg·m/s2) kilogram FREQUENCY MASS kg hertz (1/s)**POWER** second watt (J/s) TIME MAGNETIC **FLUX** INDUCTANCE tesla weber (Wb/m²) Solid lines henry represent MAGNETIC (Wb/A) multiplication; **FLUX** CAPACITANCE DENSITY dashed lines **ELECTRIC** represent division CHARGE ampere coulomb (C/V) **ELECTRIC** (A·s) CURRENT **ELECTRIC ELECTRIC** RESISTANCE POTENTIAL **TEMPERATURE** kelvin **THERMODYNAMIC** degree Celsius (V/A) (0 °C = 273.15 K) **TEMPERATURE** S **ELECTRIC** CATALYTIC CONDUCTANCE mole **ACTIVITY AMOUNT OF** siemens mol **cat** katal SUBSTANCE $(1/\Omega)$ (mol/s) lux ILLUMINANCE lumen LUMINOUS candela (Im/m²)**FLUX** (cd·sr) LUMINOUS cd INTENSITY radian steradian $(m^2/m^2 = 1)$ (m/m = 1)*This chart does not include Copyright © 2006, Revised the becquerel (Bq), gray (Gy), U.S. Metric Association **PLANE ANGLE** SOLID ANGLE or sievert (Sv) www.metric.org

SI UNITS

