Evaluation of Two New Net Radiometers and a Model to Predict Net Radiation

Mark Blonquist1, Bertrand Tanner2, Bruce Bugbee3
1Apogee Instruments, Inc., Logan, UT
2Campbell Scientific, Inc., Logan, UT
3Plant, Soils, & Climate Dept., Utah State University

Introduction

Net radiation is a key component of the surface energy balance, but it is difficult to measure. Two new net radiometers have been released in the past year. We compared these models and two, less-expensive older model net radiometers over turfgrass. Additionally, we predicted net radiation from solar radiation, air temperature, and absolute humidity measurements with a commonly used model.

Materials and Methods

The net radiometers compared in the study are as listed:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Cost</th>
<th>Reps</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hukseflux</td>
<td>NR01</td>
<td>$2400</td>
<td>3</td>
<td>LW, SW, LW, SW</td>
</tr>
<tr>
<td>Kipp &amp; Zonen</td>
<td>CNR 1</td>
<td>$6200</td>
<td>2</td>
<td>SW, SW, LW, LW,</td>
</tr>
<tr>
<td>REBS</td>
<td>Q*7.1</td>
<td>$1200</td>
<td>3</td>
<td>Rn</td>
</tr>
<tr>
<td>Kipp &amp; Zonen</td>
<td>CNR 2</td>
<td>$2600</td>
<td>3</td>
<td>SW, LW, LW, SW</td>
</tr>
<tr>
<td>Kipp &amp; Zonen</td>
<td>NR-Lite</td>
<td>$1600</td>
<td>3</td>
<td>Rn</td>
</tr>
</tbody>
</table>

The output refers to the radiation balance components measured by the sensors, where SW is incoming shortwave, SW is outgoing shortwave, LW is incoming longwave, LW is outgoing longwave, LW is net shortwave (SW - SW), LW is net longwave (LW - LW), and Rn is net radiation (SW - SW + LW - LW). All radiometers were mounted over a uniform turfgrass plot at the Utah State University Greenville Farm in Logan, Utah. The radiometers were mounted at a 1.5 meter height on a cross bar between two tripods. A datalogger (Campbell Scientific model CR7) was used to make and record the net radiation measurements, which were taken every 10 seconds and averaged over 1 hour intervals. Wind speed (R.M. Young model 03101), air temperature (Campbell Scientific model 107-L), relative humidity (Vaisala model HMP50), and precipitation (Texas Electronics model TE525WS) were also measured. The data were analyzed before and after precipitation events, but the data collected during precipitation events are not presented here. The NR-Lite and Q*7.1 radiometers were corrected for wind speed effects based on the equations published by the manufacturers.

Net radiation was also predicted from solar radiation, air temperature, and air vapor pressure measurements using a model. In the model, net longwave radiation is calculated with a Brunt (1932; 1952) approach for predicting net emissivity. The ratio of measured solar radiation to predicted clear-sky solar radiation is used as a surrogate variable for cloud cover. Net shortwave radiation is determined by direct measurement of solar radiation and the albedo of the surface, which was assumed to be 0.23 for turfgrass.

Conclusions

1 – Accuracy compared to the reference (average of two CNR 1, three NR01, three CNR 2) generally increased with cost.
2 – For the NR01, the average % difference was < 1.0 % (percentages are group averages) for all hourly measurements and daily total, but there was high variability among replicate sensors, especially at night (St. Dev. = 7.7 %). The high variability is largely caused by the LW measurement on sensor S/N 1007. The discrepancy was reported to the manufacturer and they reported an error in the LW calibration procedure, which has been corrected.
3 – Under all conditions the CNR 2 measured high relative to the reference, but was within 3.0 % for all hourly averages and daily total measurements, with low variability among replicate sensors (the maximum St. Dev. occurred at night and was 1.9 %).
4 – The NR-Lite had offsetting errors for day (5.2 % low) and night (5.9 % high), and had the lowest variability among replicate sensors (all St. Devs. were < 1.0 %). The NR-Lite agrees reasonably well with the more expensive models under most field conditions, but is not accurate following precipitation events when the thermopile surface is wet (data not shown). This was also seen by Cobos and Baker (2003) and Brotzge and Duchon (2000).
5 – The Q*7.1 was only 3.7 % low for all measurements and 4.3 % low for daily total, but had large offsetting errors for day (5.3 % low) and night (15.4 % high), similar to the NR-Lite.
6 – The advantage of the NR-Lite and Q*7.1 is low cost. The advantage of the CNR 1, NR01, and CNR 2 is accuracy under all conditions. The advantage of the CNR 1 and NR01 over the CNR 2 is the ability to measure all four Rn components rather than SW and LW only.
7 – The commonly used Rn model was high (8.2 %) during the day and low (15.3 %) at night, yielding offsetting errors. The daily totals were always high with an average of 8.0 %. Even the least expensive radiometer was more accurate than the model.

References