'CR1000 Series Datalogger Program for Measuring Apogee Model SI-111 and SI-121 (Infrared Radiometers) 'date: January 3, 2008 'program author: Mark Blonguist

'Wiring instructions for Apogee model SI-111 and SI-121 (Infrared Radiometers) 'Red Wire (positive lead for thermopile) = high side of differential channel (2H in program below) 'Black Wire (negative lead for thermopile) = low side of differential channel (2L in program below) 'Clear Wire (shield wire) = ground 'Green Wire (positive lead for thermistor) = single-ended channel (SE1 in program below) 'Blue Wire (negative lead for thermistor) = ground 'White Wire (excitation for thermistor) = excitation channel (EX1 in program below)

'Explanation of variables and constants used in program

- 'PanelT = datalogger panel temperature
- 'BattV = datalogger battery voltage

'SBTempC = sensor body temperature in degrees Celsius

'SBTempK = sensor body temperature in Kelvin

'TargmV = mV output of thermopile infrared detector (dependent on temperature difference between target and sensor body)

'm = slope of equation relating target and sensor body temperatures to mV output of thermopile

b = intercept of the equation relating target and sensor body temperatures to mV output of thermopile

- 'TargTempK = target temperature in Kelvin
- 'TargTempC = target temperature in degrees Celsius
- mC2 = polynomial coefficient (C2) used to calculate slope (m)
- 'mC1 = polynomial coefficient (C1) used to calculate slope (m)
- 'mC0 = polynomial coefficient (C0) used to calculate slope (m)
- 'bC2 = polynomial coefficient (C2) used to calculate intercept (b)
- 'bC1 = polynomial coefficient (C1) used to calculate intercept (b)
- 'bC0 = polynomial coefficient (C0) used to calculate intercept (b)

'Note that all calibration coefficients are sensor-specific; those listed below are examples and must be changed based on the sensor being used.

'Declare public variables

Public PanelT, BattV, SBTempC, SBTempK, TargmV, m, b, TargTempK, TargTempC

'Declare constants (replace the listed values with coefficients received with sensor)

Const mC2 = 82213 Const mC1 = 7841000 Const mC0 = 1419700000 Const bC2 = 13114 Const bC1 = 185020

Const bC0 = -17215000

'Define data table (table is outputting data every 60 seconds)

DataTable (IRR,1,-1)

DataInterval (0,60,Sec,10)

Minimum (1,BattV,FP2,0,False)

Sample (1, PanelT, FP2)

Average (1,TargmV,FP2,False)

Average (1,SBTempC,FP2,False)

Average (1,TargTempC,FP2,False)

EndTable

'Main program (program is making a measurement every 5 seconds)

BeginProg

Scan (5,Sec,0,0)

PanelTemp (PanelT,_60Hz)

Battery (BattV)

'Instruction to measure sensor body temperature (green wire to SE1, white wire to EX1, blue wire to ground)

Therm109 (SBTempC,1,1,Vx1,0,_60Hz,1.0,0)

Instruction to measure mV output of thermopile detector (red wire to 2H, black wire to 2L, clear wire to ground)

VoltDiff (TargmV,1,mV2_5,2,True ,0,_60Hz,1.0,0)

m = mC2 * SBTempC^2 + mC1 * SBTempC + mC0

 $b = bC2 * SBTempC^2 + bC1 * SBTempC + bC0$

'Calculation of target temperature

SBTempK = SBTempC + 273.15 TargTempK = ((SBTempK^4) + m * TargmV + b)^0.25 TargTempC = TargTempK - 273.15

'Call output tables

CallTable IRR

NextScan

EndProg